Unusual reactions of cationic carbyne complexes of manganese and rhenium with [NMe4][HFe(CO)4] to form heteronuclear dimetal carbene-bridged complexes

Yongjun Tang, Jie Sun and Jiabi Chen *

Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

The reaction of a cationic carbyne complex of manganese $[Mn(\equiv CPh)(\eta - C_5H_5)(CO)_2]BBr_4$ 1 with the salt [NMe**4**][HFe(CO)**4**] **3** in thf at low temperature gave [Mn(η-C**5**H**5**)(CO)**3**] **4** and a novel dimetal carbene-bridged complex $[MnFe{µ-C(H)Ph}(η-C₅H₅)(CO)₅]$ **5**. The cationic rhenium carbyne complex $[Re(=CPh)(η-C₅H₅)$ - $(CO)_2$]BBr₄ **2** similarly reacted with **3** to give $[Re(\eta-C_sH_s)(CO)_3]$ **6** and $[ReFe{\{\mu-C(H)Ph}\}\eta-C_sH_s)(CO)_6]$ **7**. Complex 5 reacted with carbon monoxide gas leading to cleavage of the μ -C-Mn and Mn-Fe bonds to afford **4** and a novel benzene-co-ordinated acyltricarbonyliron complex [Fe(PhCHCO)(CO)**3**] **8**. The reaction of **7** with PPh**3** yielded [ReFe{µ-C(H)Ph}(η-C**5**H**5**)(CO)**5**(PPh**3**)] **9**. The structures of complexes **5**, **8** and **9** have been established by X-ray diffraction studies.

Our interest in the synthesis, structure, and chemistry of di- and tri-metal carbene- and carbyne-bridged complexes stems from the possible involvement of these species in some reactions catalysed by organometallic compounds.**1,2** The chemistry of the carbene- and carbyne-bridged complexes has been extensively studied by Stone and co-workers and a number of dimetal carbene-bridged complexes has been synthesized by the reactions of carbene complexes with low-valent metal species **3,4** or of neutral carbyne complexes with metal hydrides.**5,6** Recently, we reported the reaction of a cationic carbyne complex $[M(\equiv CPh)(\eta - C_5H_5)(CO)_2]BBr_4$ (M = Re or Mn) with $[Fe(CO)₄]^{2–}$ to yield unexpected dimetal carbene-bridged complexes.**7,8** This represents a new route to such complexes. We are now interested in examining the application range of this new synthetic method for dimetal carbene-bridged complexes and the effect of different nucleophiles containing the carbonyliron anion on the reactivities of cationic carbyne complexes and on the reaction products. Thus, we chose the monoanion $[HFe(CO)_4]$ ⁻ 3 as a nucleophile for the reaction with the cationic carbyne complexes $[M(\equiv CPh)(η-C₅H₅)(CO)₂]BBr₄$ (M = Mn **1** or Re **2**) which afforded new heteronuclear dimetal carbene-bridged complexes. Herein we describe this unusual reaction and the structures of the resulting products.

Experimental

All reactions were performed under a dry, oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents employed were reagent grade and dried by refluxing over appropriate drying agents and stored over 4 Å molecular sieves under a nitrogen atmosphere. Tetrahydrofuran (thf) and diethyl ether $(Et₂O)$ were distilled from sodium–benzophenone, while light petroleum (b.p. 30–60 °C) was distilled from CaH₂ and CH_2Cl_2 from P_2O_5 . The neutral alumina (Al_2O_3) used for chromatography was deoxygenated at room temperature under high vacuum for 16 h, deactivated with 5% w/w N₂-saturated water, and stored under N_2 . The compounds $[Mn(\equiv CPh)]$ - $(\eta$ -C₅H₅)(CO)₂]BBr₄</sub> **1**⁹ and $[Re(\equiv CPh)(\eta$ -C₅H₅)(CO)₂]BBr₄</sub> **2**¹⁰ were prepared as previously described, as was [NMe**4**][HFe- $(CO)_4$] $3.^{11}$

The IR spectra were recorded on a Shimadzu-IR-440 spectrophotometer, **¹** H NMR spectra at ambient temperature (20 °C) in $(CD_3)_2CO$ solution with SiMe_4 as internal reference using a Bruker AM-300 spectrometer and electron ionization

DALTON FULL PAPER **ULL PAPEF**

(EI) mass spectra on a Hewlett-Packard 5989A spectrometer. Melting points obtained on samples in sealed nitrogen-filled capillaries are uncorrected.

Reaction of [Mn(\equiv **CPh)(** η **-C₅H₅)(CO)₂]BBr₄ 1 with [NMe₄]-** $[{\rm HFe}({\rm CO})_4]$ ^{$\rm{3}$} to give $[{\rm Mn}({\rm n\text{-}C_5H_5})({\rm CO})_3]$ $\rm{4}$ and $[{\rm MnFe}({\rm \mu\text{-}C(H)}-{\rm cm}^2)]$ **Ph**}(η-C₅H₅)(CO)₅**]** 5

The compound $[NMe_4][HFe(CO)_4]$ **3** (0.64 g, 2.63 mmol) was dissolved in thf (80 cm³) and cooled to -90 °C. To this solution was added portionwise **1** (1.57 g, 2.63 mmol) with vigorous stirring. The reaction mixture was stirred at -90 to -45 °C for 4 h, during which time the orange solution gradually turned dark purple-red. The resulting solution was evaporated to dryness under high vacuum at -45 to -40 °C. The dark purple-red residue was chromatographed on an alumina column (neutral, 200–300 mesh; 1.6×15 cm) at -25 °C with light petroleum as the eluent. The orange band which eluted first was collected, and then the purple-red band was eluted with light petroleum– $CH₂Cl₂$ (20:1). The solvents were removed from the above two eluates under vacuum, and the residues recrystallized from light petroleum or light petroleum–CH₂Cl₂ solution at -80 °C. From the first fraction, 0.15 g (25%, based on **1**) of yellow crystals of **4 ¹²** was obtained, a known compound identified by comparison of its melting point, IR and **¹** H NMR spectra with those of the actual sample. From the second fraction, 0.68 g (63%, based on **1**) of **5** as purple-red crystals was obtained, m.p. $142-144$ °C (decomp.) IR (*n*-hexane): \tilde{v} (CO) 2002s, 2000s, 1995s, 1952vs (br) and 1918s cm⁻¹. ¹H NMR (CD₃COCD₃): δ 10.26 (s, 1 H, µ-CH), 7.34–7.13 (m, 5 H, C**6**H**5**) and 5.11 (s, 5 H, C**5**H**5**). Mass spectrum m/z 406 (M^+) and 322 (M^+ – 3CO) (Found: C, 49.60; H, 2.55. Calc. for C**17**H**11**FeMnO**5**: C, 50.03; H, 2.73%).

Reaction of [Re(]]]**CPh)(ç-C5H5)(CO)2]BBr4 2 with [NMe4]- [HFe(CO)4] 3 to give [Re(ç-C5H5)(CO)3] 6 and [ReFe- {ì-C(H)Ph}(ç-C5H5)(CO)6] 7**

Compound **2** (0.47 g, 0.65 mmol) was treated, in a manner similar to that described above, with [NMe**4**][HFe(CO)**4**] (0.16 g, 0.66 mmol). The reaction mixture was stirred at -90 to -50 °C for 3.5 h, during which time the orange-yellow solution gradually turned purple-red. Further treatment of the resulting mixture as described above afforded 0.015 g (6%, based on **2**) of yellow crystals of **6 ¹³** and 0.26 g (71%, based on **2**) of brick-red

crystals of **7**. **7** Complex **6** was identified by comparison of its melting point, IR and **¹** H NMR spectra with those of the actual sample. Complex 7: m.p. 84–85 °C (decomp.) IR (CH₂Cl₂) \tilde{v} 2016s, 1996vs, 1950s (br) and 1891vs (br) cm⁻¹. ¹H NMR (CD**3**COCD**3**) δ 9.02 (s, 1 H, µ-CH), 7.42 (m, 2 H, C**6**H**5**), 7.21 (m, 2 H, C**6**H**5**), 7.00 (m, 1 H, C**6**H**5**) and 5.70 (s, 5 H, C**5**H**5**). Mass spectrum m/z 566 (M^+ , based on ¹⁸⁷Re, ⁵⁶Fe) (Found: C, 38.56; H, 2.15. Calc. for C**18**H**11**FeO**6**Re: C, 38.24; H, 1.96%).

Reaction of complex 5 with CO to give 4 and [Fe(PhCHCO)- (CO)3] 8

Carbon monoxide gas was bubbled through a solution of complex **5** (0.037 g, 0.09 mmol) in thf (40 cm³) at -40 to -10 °C for 6 h, during which time the purple-red solution gradually turned brown-red. After removal of the solvent *in vacuo*, the residue was chromatographed on Al_2O_3 with light petroleum as the eluent. The orange band which eluted first was collected, and then the brown-red band was eluted with light petroleum– $CH_2Cl_2-Et_2O$ (20:1:1). The solvents were removed from the above two eluates under vacuum, and the residues recrystallized from light petroleum or light petroleum– $CH₂Cl₂$ solution at -80 °C. From the first fraction, 0.006 g (31%, based on **5**) of yellow crystals of **4** was obtained. From the second, 0.011 g (46%, based on **5**) of brown-red crystals of **8** was obtained: m.p. 66–68 °C (decomp.); IR (*n*-hexane) \tilde{v} (CO) 2063s, 2004vs, 1994vs and 1788s cm⁻¹; ¹H NMR (CD₃COCD₃) δ 7.30–7.17 (m, 5 H, C_6H_5) and 6.13 (s, 1 H, CH); mass spectrum mlz 258 (M^+) and 202 $(M^+ - 2CO)$ (Found: C, 50.85; H, 2.50. Calc. for C**11**H**6**FeO**4**: C, 51.21; H, 2.34%).

Reaction of complex 7 with PPh₃ to give $[ReFe{ μ -C(H)Ph}$ **-** $(n - C_5H_5)(CO)_{5}(PPh_3)$] 9

To complex **7** (0.050 g, 0.09 mmol) dissolved in thf (30 cm**³**) at -55 °C was added PPh₃ (0.026 g, 0.10 mmol). The mixture was stirred at -55 to 0 °C for 7 h, during which time the brown-red solution turned gradually orange-red. After evaporation of the solvent *in vacuo*, the residue was chromatographed on alumina with light petroleum followed by light petroleum–CH₂Cl₂ $(10:1)$ as the eluent. After leaving the orange-red band which contains unchanged **7**, the orange band was eluted with light petroleum– CH_2Cl_2 – Et_2O (5:1:1) and collected. The solvent was removed under vacuum, and the residue recrystallized from light petroleum–CH₂Cl₂ solution at -80 °C to give 0.045 g (52%, based on 7) of orange-yellow crystals of 9: m.p. 85–86 °C (decomp.); IR (CH₂Cl₂) \tilde{v} (CO) 2040w, 2033s, 1959vs and 1878vs cm⁻¹; ¹H NMR (CD₃COCD₃) δ 8.50 (s, 1 H, μ-CH), 7.47–7.34 (m, 15 H, C**6**H**5**), 6.98–6.84 (m, 5 H, C**6**H**5**) and 5.47 (s, 5 H, C₅H₅); mass spectrum mlz 543 ($M^+ - H - PPh_3$), 515 $(M^+ - H - PPh_3 - CO)$, 431 $(M^+ - H - PPh_3 - 4CO)$ and 403 ($M^+ - H - PPh_3 - 5CO$) (Found: C, 44.60; H, 2.90. Calc. for C**35**H**26**FePReO**5**?2CH**2**Cl**2**: C, 45.10; H, 3.15%).

Crystallography

Single crystals of complexes **5**, **8** and **9** suitable for X-ray diffraction study were obtained by recrystallization from light petroleum–CH₂Cl₂ solutions at -80 °C. They were sealed in capillaries under a nitrogen atmosphere. X-Ray diffraction data were collected with a Rigaku AFC7R diffractometer at 20° C using Mo-Kα radiation (λ 0.710 69 Å) and the ω-2θ scan mode within the ranges $5 \le 2\theta \le 40^{\circ}$ for **5**, $5 \le 2\theta \le 50^{\circ}$ for **8**, and $5 \le 2\theta \le 45^{\circ}$ for **9**, respectively. Intensity data for 1649, 1106 and 3788 independent reflections, of which 704, 864 and 2860 had $I > 2.00σ(I)$ (for 5) and $I > 3.00σ(I)$ (for 8 and 9), were corrected for Lorentz-polarization effects. An empirical absorption correction using the program DIFABS**¹⁴** was applied which resulted in transmission factors ranging from 0.66 to 0.97 and 0.84 to 1.17 for **5** and **9**, respectively. For **8**, an empirical absorption correction based on azimuthal scans of several reflections

was applied which resulted in transmission factors ranging from 0.96 to 1.00.

The structures of complexes **5** and **9** were solved by direct methods and expanded using Fourier techniques. The nonhydrogen atoms were refined anisotropically for **9**, but only the Fe and Mn were anisotropic for **5**. The hydrogen atoms were included but not refined. The final cycle of full-matrix leastsquares refinement was based on 704 and 2860 observed reflections and 107 and 442 variable parameters and converged with unweighted and weighted agreement factors of $R = 0.090$ and *R*9 = 0.092 for **5** and 0.049 and 0.057 for **9**, respectively. For **8** the structure was solved by heavy-atom Patterson methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included but not refined; the final cycle of full-matrix least-squares refinement was based on 864 observed reflections and 145 variables and converged with $R = 0.031$ and $R' = 0.035$. All the calculations were performed using the TEXSAN software package.**¹⁵**

Details of the crystallographic data and the procedures used for data collection and reduction are given in Table 1, selected bond lengths and angles in Tables 2 and 3, respectively.

CCDC reference number 186/861.

Results and Discussion

The complex $[Mn(\equiv CPh)(\eta - C_5H_5)(CO)_2]BBr_4$ 1 was treated with an equimolecular amount of [NMe**4**][HFe(CO)**4**] **3** in thf at -90 to -45 °C for 4 h. After removal of the solvent under high vacuum, the residue was chromatographed on an alumina column at low temperature and the crude products were recrystallized from light petroleum–CH₂Cl₂ at -80° C to give yellow crystals of **4** and purple-red crystals of **5** (Scheme 1) in 25 and 63% isolated yields, respectively. Complex **4** is a known compound $[Mn(n-C₅H₅)(CO)₃]$ ¹² and 5 is a novel heteronuclear dimetal carbene-bridged complex with the composition $[MnFe{µ-C(H)Ph}(η-C₅H₅)]$ the structure of which has been confirmed by X-ray crystallography.

The complex $[Re(\equiv CPh)(η-C₅H₅)(CO)₂]BBr₄$ 2 reacted similarly under the same conditions to afford yellow crystals of **6** and the brick-red crystals of **7** in 6 and 71% yields, respectively. Complexes **6** and **7** are known compounds, the former is $[Re(\eta - C_5H_5)(CO)_3]$ ¹³ and the latter, a dimetal carbene-bridged

Fig. 1 Molecular structure and atom labelling for $[MnFe{µ-C(H)Ph}$ - $(η$ -C₅H₅ $)(CO)$ ₅ $]$ **5**

complex, is identical with that produced by the reaction**⁷** of **2** with $[NEt_4]_2[Fe_2(CO)_8]$, $Na_2[Fe(CO)_4]$ or $Na_2[Fe_3(CO)_{11}]$.

Interestingly, the reaction of complex **5** with carbon monoxide gas in thf at -40 to -10 °C led to heterolytic cleavage of the Mn–Fe bond and breaking of the μ –C–Mn bond of **5** to afford **4** and brown-red crystals of **8** (Scheme 2) in 31 and 46% yields, respectively. Compound **8** is formulated as a novel benzene-co-ordinated acyltricarbonyliron complex with the composition $[Fe(Ph₂CHCO)(CO)₃]$ the structure of which has been established by X-ray diffraction analysis. However, complex **7** did not react with carbon monoxide gas under the same conditions. When a stoichiometric amount of CO gas was used for the reaction with **5** no product **8** was isolated, indicating that an excess of CO is necessary. It is equally interesting that complex 7 when treated with PPh₃ in thf at -55 to 0 °C gave $[ReFe{μ-C(H)Ph}(η-C₅H₅)(CO)₅(PPh₃)]$ 9, in which a CO ligand on iron has been displaced by PPh₃, in 52% yield. Unexpectedly, the reaction of 5 with PPh₃ under the same conditions gave no analogous PPh₃-substituted complex, as in the reaction of $[PtW{ ${μ-n^1:n^3-CH(C_6H_4Me-4)}(n-C_5H_5)(CO)_2$ (PEt₃)₂][BF₄]$ ¹⁶ or complex 7 with PPh₃, but decomposition products such as $[Fe(CO)_3(PPh_3)_2]$.¹⁷

Complexes **5**, **8** and **9** are readily soluble in polar organic solvents but slightly soluble in non-polar solvents, and sensitive to air and temperature in solution but relatively stable as solids. Their structures were confirmed by elemental analyses, spectroscopic data (Experimental section) and X-ray diffraction analyses.

The molecular structure of complex **5** is shown in Fig. 1. Owing to serious intensity decay of the crystal during the data collection at room temperature (20 $^{\circ}$ C), only reflections within the range $5 \le 2\theta \le 40^{\circ}$ were collected, so that only 668 reflections with $I > 3.00\sigma(I)$ were observable, which led to a poor refinement and larger errors for the bond parameters. However,

Fig. 2 Molecular structure and atom labelling for [Fe(PhCHCO)- $(CO)_{3}$ **8**

the result undoubtedly confirms the overall structure of **5**. The molecular structure **5** shows a bridge system in which two carbon atoms[$C(12)$ and $C(13)$] of the phenyl ring are bonded to the Fe atom to construct a ferracyclopropane ring. However, there is no **¹** H NMR evidence for this because no high-field shift attributed to the proton attached to the 'olefinic' bond was observed. We tentatively explain it by the $C(12)$ and $C(13)$ atoms being involved in η^2 instead of η^1 , η^1 bonding to the Fe atom; thus in solution the phenyl group rotates about the $C(11)$ – $C(12)$ bond on the NMR timescale at room temperature (20 °C) as that observed in the analogous complex $[CoW]\mu$ $η$ ¹: $η$ ³-CH(C₆H₄Me-4)}($η$ -C₅H₅)($η$ -C₅Me₅)(CO)₃][BF₄] which showed dynamic behaviour for the tolyl group at 25 \degree C, ceasing at -70 °C.¹⁶ The Mn–Fe distance of 2.770(7) Å in 5 is somewhat longer than that found in analogous carbene-bridged complexes $[MnFe{µ-C(COEt)Ph}(η-C₅H₅)(CO)₅] [2.6929(8)$ Å] **⁸** and [ReFe{µ-C(H)Ph}(η-C**5**H**5**)(CO)**6**] [2.7581(8) Å]. **7**

The molecular structure of complex **8** (Fig. 2) shows that the benzene ring is still bonded to the Fe atom, and a formyl $(C=O)$ group is bonded to the original alkylidene carbon [C(11)] and the Fe atom through the C(18) atom and provides one electron for the Fe atom to satisfy an 18-electron configuration. The molecular structure reveals a bridge system in which two carbon atoms $[C(12)$ and $C(13)]$ of the aryl ring form an η^2 attachment to the iron, so that the C(H)Ph group as a whole adopts an η^3 -bonding mode to the metal as that of μ -C(H)- C_6H_4Me in [PtW{μ-η¹:η³-CH(C₆H₄Me-4)}(η-C₅H₅)(CO)₂- $(PMe_3)_2$]BF₄.¹⁶ However, the ¹H NMR data for **8** at 20 °C show dynamic behaviour for the phenyl group and reveal that in solution it rotates about the $C(11)$ – $C(12)$ bond on the NMR timescale as in **5**.

The molecular structure of complex **9** (Fig. 3) resembles that of **7**, except that the substituents on the Fe atom are three CO and one PPh₃ groups in 9 but four CO groups in 7. The coordination geometry around the Re atom is that of a pseudotrigonal bipyramid if the (η**⁵**)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex, and the Fe atom is in an approximately octahedral environment. The Re–Fe bond length of 2.777(2) \AA in **9** is slightly longer than that of **7** [2.7581(8) Å]. **7** The alkylidene carbon asymmetrically bridges the Re-Fe bond [μ -C-Re 2.17(1), μ -C-Fe 2.03(1) Å] with an angle Re–C(7)–Fe of $82.7(5)^\circ$ similar to that in **7** [µ-C-Re 2.120(5), µ-C-Fe 2.097(5) Å; Re-C(7)-Fe 81.7(2)^o]. The μ -C-Re distance in 9 is comparable with that of 7 and the complex $[Re_2(\mu-H)_2(\mu-CHBu^t)(η-C_6H_6)_2]$ [2.13(3) Å],¹⁸ and the μ -C-Fe distance is close to that found in **5**. The P-Fe bond length of $2.258(4)$ Å is nearly the same as the normal P-Fe bond distance {2.260(3) Å in [PFe(NO)**2**(CO)(PPh**3**)], **¹⁹** 2.244(1) Å in $[Fe(CO)_4(PPh_3)]^{20}$. The P-Fe-C(7) and P-Fe-Re bond angles are $96.7(4)$ and $147.3(1)^\circ$, respectively.

^a $\Sigma ||F_o| - |F_c||\Sigma|F_o|$.^b $[\Sigma w(|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^2$; $w = 1/\sigma^2(|F_o|)$. ^c $[\Sigma w(|F_o| - F_c|)^2/(N_o - N_p)]^2$, where N_o , N_p = numbers of observations and parameters.

Fig. 3 Molecular structure and atom labelling for $[ReFe{ μ -C(H)Ph}{(η-C₅H₅)(CO)₅(PPh₃)}$ **9**

The possible reaction pathway to complex **5** (Scheme 1) could involve initial formation of a carbene intermediate $[(OC)_2$ - $(n-C_sH_s)Mn=C(Ph)FeH(CO)₄$, where the FeH(CO)₄ moiety is directly bonded to the carbene carbon through Fe, by attack of the $[HFe(CO)_4]$ ⁻ anion on the cationic carbyne carbon of 1. The carbene intermediate would then undergo a hydrogen migration from Fe to the carbene carbon and bonding of the Fe to Mn accompanied by loss of one CO ligand from the Fe(CO)**4** moiety and co-ordination of the benzene ring to the Fe atom. Analogous heteronuclear dimetal carbene-bridged complexes, [MW{µ-η**¹** :η**³** -CH(C**6**H**4**Me-4)}(η-C**5**H**5**)(CO)**2**(L*n*)][BF**4**] $[ML_n = Cr(\eta - C_5H_5)(CO)(NO), Co(CO)(\eta - C_5Me_5), or Pt(PR_3)_2]$
and $[PtW{\mu - \eta^{-1}: \eta^3-CH(C_6H_4Me-4)}{\eta - C_5H_5})(CO), (PEt_3)_2]$ and $[PtW{\{\mu-\eta^1:\eta^3\}-CH(C_6H_4Me-4)}{\{\eta-C_5H_5(CO)_2(PEt_3)_2\}}$ [BF**4**], with the co-ordination of the benzene ring to the metal, have been reported by Stone and co-workers **16,21** by protonation of dimetal carbyne-bridged complexes [CrW(µ-CC**6**H**4**Me-4)(η- C_5H_5)₂(CO)₃(NO)], [CoW(μ-CC₆H₄Me-4)(η-C₅H₅)(η-C₅Me₅)-

(CO)₃], and [PtW(μ-CC₆H₄Me-4)(η-C₅H₅)(CO)₂(PR₃)₂] (PR₃ = PMe₃, PMe₂Ph, or PMePh₂) with HBF₄·Et₂O, or by the reaction²² of the neutral carbyne complex $[W(\equiv CC_6H_4Me-4)$ -(η-C**5**H**5**)(CO)**2**] with the cationic metal hydride *trans*-[Pt(H)- (PEt**3**)**2**(Me**2**CO)][BF**4**].

The reaction pathway to complex **8** (Scheme 2) might proceed by an initial attack of CO on the μ -C-Mn or/and Mn-Fe bond of 5 which could then suffer heterolytic cleavage of these bonds with addition of one CO molecule to the Mn and the insertion of another CO molecule into the μ -C-Fe bond to form complexes **4** and **8**, respectively. The formation of **8** is not surprising since the analogous insertion of CO into the Fe–C (carbene) bond of an η ³-co-ordinated carbene ligand to give an (vinylketene)iron complex with an η**⁴** -co-ordinated acyl ligand has been observed in the reaction of tricarbonyl- (η**³** -vinylcarbene)iron with carbon monoxide.**²³**

The heteronuclear dimetal carbene-bridged complexes **5** and

Table 2 Selected bond lengths (Å) for complexes **5**, **8** and **9**

Table 3 Selected bond angles (8) for complexes **5**, **8** and **9**

7 were synthesized by a new route. Thus, the cationic carbyne complexes of manganese and rhenium not only react with the carbonyliron dianion but also with the carbonyliron monoanion to produce dimetal carbene-bridged complexes. Moreover, the present method is a more simple and convenient route to the preparation of such complexes.

Acknowledgements

We thank the National Natural Foundation of China and the Science Foundation of the Chinese Academy of Sciences for financial support.

References

1 C. K. Rofer Depooeter, *Chem. Rev.*, 1981, **81**, 447.

- 2 G. Wilkinson, F. G. A. Stone and E. W. Abel, *Comprehensive Organometallic Chemistry*, Pergamon, Oxford, 1982, vol. 8, p. 40.
- 3 T. V. Ashworth, J. A. K. Howard, M. Laguna and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1980, 1593.
- 4 G. A. Carriedo, J. A. K. Howard and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1984, 1555.
- 5 D. Hodgson, J. A. K. Howard, F. G. A. Stone and M. J. Went, *J. Chem. Soc.*, *Dalton Trans.*, 1985, 1331.
- 6 M. U. Pilotti, F. G. A. Stone and I. Topaloglu, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 1621.
- 7 J.-B. Chen, Y. Yu, K. Liu, G. Wu and P.-J. Zheng, *Organometallics*, 1993, **12**, 1213.
- 8 Y. Yu, J.-B. Chen, J. Chen and P.-J. Zheng, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 1443.
- 9 E. O. Fischer, E. W. Meineke and F. R. Kreissl, *Chem. Ber.*, 1977, **110**, 1140.
- 10 E. O. Fischer, J.-B. Chen and K. Scherzer, *J. Organomet. Chem.*, 1983, **253**, 231.
- 11 T. E. Cole and R. Pettit, *Tetrahedron Lett.*, 1977, **9**, 781.
- 12 T. S. Piper, F. A. Cotton and G. Wilkinson, *J. Inorg. Nucl. Chem.*, 1955, **1**, 165.
- 13 E. O. Fischer and W. Fellmann, *J. Organomet. Chem.*, 1963, **1**, 191.
- 14 N. Walker and D. Stuart, DIFABS, *Acta Crystallogr.*, *Sect. A*, 1983, **39**, 158.
- 15 TEXSAN, Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.
- 16 J. C. Jeffery, I. Moore, H. Razay and F. G. A. Stone, *J. Chem. Soc.*, *Chem. Commun.*, 1981, 1255.
- 17 A. Davison, W. McFarlane, L. Pratt and G. Wilkinson, *J. Chem. Soc.*, 1962, 3653; *Inorg. Synth.*, 1966, **8**, 185.
- 18 J. A. Bandy, F. G. N. Cloke, M. L. H. Green, D. O'Hare and K. Prout, *J. Chem. Soc.*, *Chem. Commun.*, 1984, 240.
- 19 V. G. Albano, A. Araneo, P. L. Bellon, G. Ciani and M. Manassero, *J. Organomet. Chem.*, 1974, **67**, 413.
- 20 P. E. Riley and R. E. Davis, *Inorg. Chem.*, 1980, **19**, 159.
- 21 J. C. Jeffery, J. C. V. Laurie, I. Moore, H. Razay and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1984, 1563.
- 22 J. H. Davis, jun. and C. M. Lukehart, *Organometallics*, 1984, **3**, 1763.
- 23 T.-A. Mitssudo, T. Sasaki, Y. Watanabe, Y. Takegami, S. Nishigaki and K. Nakatsu, *J. Chem. Soc.*, *Chem. Commun.*, 1978, 252.

Received 11*th December* 1997; *Paper* 7/08910D